Interact with LLMs using OpenAI's Responses API with built-in tools and structured output.
For more information, refer to the OpenAI Responses API docs.
type: "io.kestra.plugin.openai.responses"
Send a simple text prompt to OpenAI and output the result as text.
id: simple_text
namespace: company.team
inputs:
- id: prompt
type: STRING
defaults: Explain what is Kestra in 3 sentences
tasks:
- id: explain
type: io.kestra.plugin.openai.Responses
apiKey: "{{ secret('OPENAI_API_KEY') }}"
model: gpt-4.1-mini
input: "{{ inputs.prompt }}"
- id: log
type: io.kestra.plugin.core.log.Log
message: "{{ outputs.explain.outputText }}"
Use the OpenAI's web-search tool to find recent trends in workflow orchestration.
id: web_search
namespace: company.team
inputs:
- id: prompt
type: STRING
defaults: List recent trends in workflow orchestration
tasks:
- id: trends
type: io.kestra.plugin.openai.Responses
apiKey: "{{ secret('OPENAI_API_KEY') }}"
model: gpt-4.1-mini
input: "{{ inputs.prompt }}"
toolChoice: REQUIRED
tools:
- type: web_search_preview
- id: log
type: io.kestra.plugin.core.log.Log
message: "{{ outputs.trends.outputText }}"
Use the OpenAI's web-search tool to get a daily summary of local news via email.
id: fetch_local_news
namespace: company.team
inputs:
- id: prompt
type: STRING
defaults: Summarize top 5 news from my region
tasks:
- id: news
type: io.kestra.plugin.openai.Responses
apiKey: "{{ secret('OPENAI_API_KEY') }}"
model: gpt-4.1-mini
input: "{{ inputs.prompt }}"
toolChoice: REQUIRED
tools:
- type: web_search_preview
search_context_size: low # optional; low, medium, high
user_location:
type: approximate # OpenAI doesn't provide other types atm, and it cannot be omitted
city: Berlin
region: Berlin
country: DE
- id: mail
type: io.kestra.plugin.notifications.mail.MailSend
from: your_email
to: your_email
username: your_email
host: mail.privateemail.com
port: 465
password: "{{ secret('EMAIL_PASSWORD') }}"
sessionTimeout: 6000
subject: Daily News Summary
htmlTextContent: "{{ outputs.news.outputText }}"
triggers:
- id: schedule
type: io.kestra.plugin.core.trigger.Schedule
cron: "0 9 * * *"
Use the OpenAI's function-calling tool to respond to a customer review and determine urgency of response.
id: responses_functions
namespace: company.team
inputs:
- id: prompt
type: STRING
defaults: I love your product and would purchase it again!
tasks:
- id: openai
type: io.kestra.plugin.openai.Responses
apiKey: "{{ secret('OPENAI_API_KEY') }}"
model: gpt-4.1-mini
input: "{{ inputs.prompt }}"
toolChoice: AUTO
tools:
- type: function
name: respond_to_review
description: >-
Given the customer product review provided as input, determine how
urgently a reply is required and then provide suggested response text.
strict: true
parameters:
type: object
required:
- response_urgency
- response_text
properties:
response_urgency:
type: string
description: >-
How urgently this customer review needs a reply. Bad reviews must
be addressed immediately before anyone sees them. Good reviews
can wait until later.
enum:
- reply_immediately
- reply_later
response_text:
type: string
description: The text to post online in response to this review.
additionalProperties: false
- id: output
type: io.kestra.plugin.core.output.OutputValues
values:
urgency: "{{ fromJson(outputs.openai.outputText).response_urgency }}"
response: "{{ fromJson(outputs.openai.outputText).response_text }}"
Run a stateful chat with OpenAI using the Responses API.
id: stateful_chat
namespace: company.team
inputs:
- id: user_input
type: STRING
defaults: How can I get started with Kestra as a microservice developer?
- id: reset_conversation
type: BOOL
defaults: false
tasks:
- id: maybe_reset_conversation
runIf: "{{ inputs.reset_conversation }}"
type: io.kestra.plugin.core.kv.Delete
key: "RESPONSE_ID"
- id: chat_request
type: io.kestra.plugin.openai.Responses
apiKey: "{{ secret('OPENAI_API_KEY') }}"
model: gpt-4.1
previousResponseId: "{{ kv('RESPONSE_ID', errorOnMissing=false) }}"
input:
- role: user
content:
- type: input_text
text: "{{ inputs.user_input }}"
- id: store_response
type: io.kestra.plugin.core.kv.Set
key: "RESPONSE_ID"
value: "{{ outputs.chat_request.responseId }}"
- id: output_log
type: io.kestra.plugin.core.log.Log
message: "Response: {{ outputs.chat_request.outputText }}"
Return a structured output with nutritional information about a food item using OpenAI's Responses API.
id: structured_output_demo
namespace: company.team
inputs:
- id: food
type: STRING
defaults: Avocado
tasks:
- id: generate_structured_response
type: io.kestra.plugin.openai.Responses
apiKey: "{{ secret('OPENAI_API_KEY') }}"
model: gpt-4.1-mini
input: "Fill in nutrients information for the following food: {{ inputs.food }}"
text:
format:
type: json_schema
name: food_macronutrients
schema:
type: object
properties:
food:
type: string
description: The name of the food or meal.
macronutrients:
type: object
description: Macro-nutritional content of the food.
properties:
carbohydrates:
type: number
description: Amount of carbohydrates in grams.
proteins:
type: number
description: Amount of proteins in grams.
fats:
type: number
description: Amount of fats in grams.
required:
- carbohydrates
- proteins
- fats
additionalProperties: false
vitamins:
type: object
description: Specific vitamins present in the food.
properties:
vitamin_a:
type: number
description: Amount of Vitamin A in micrograms.
vitamin_c:
type: number
description: Amount of Vitamin C in milligrams.
vitamin_d:
type: number
description: Amount of Vitamin D in micrograms.
vitamin_e:
type: number
description: Amount of Vitamin E in milligrams.
vitamin_k:
type: number
description: Amount of Vitamin K in micrograms.
required:
- vitamin_a
- vitamin_c
- vitamin_d
- vitamin_e
- vitamin_k
additionalProperties: false
required:
- food
OpenAI API key
Input to the prompt's context window
Model name to use (e.g., gpt-4o)
See the OpenAI model's documentation
10
The maximum number of seconds to wait for a response.
Maximum tokens in the response
Allow parallel tool execution
ID of previous response to continue conversation
Reasoning configuration
Configuration for model reasoning process
true
Whether to persist response and chat history
If true (default), persists in OpenAI's storage
1.0
Sampling temperature (0-2)
Text response configuration
Configure the format of the model's text response
NONE
AUTO
REQUIRED
Controls which tool is called by the model
none: no tools, auto: model picks, required: must use tools
1.0
Nucleus sampling parameter (0-1)
A unique identifier representing your end-user.
The generated text output
Full API response for advanced use
ID of the persisted response
List of sources (for web/file search)